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Unsteady laminar convection in uniformly 
heated vertical pipes 
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In  this paper an exact solution is presented for the problem of unsteady laminar 
convective flow under a pressure gradient along a vertical pipe. We have obtained 
the solution of the problem on the basis of the assumption that the velocity and 
buoyancy profiles far from the pipe entrance do not change with the height, and 
the entry lengths have been ignored. The wall of the pipe is heated or cooled 
uniformly. We have discussed both the cases, when buoyancy forces act together 
with the pressure gradient or in opposite direction. 

In  the case when the upflow is heated (or a downflow is cooled) the velocity and 
thermal boundary layers are formed for sufficiently large Rayleigh numbers. 
In  the second case which has been discussed in detail (when the upflow is cooled 
or the downflow is heated) we have found the critical value of the Rayleigh 
number R = R, beyond which the velocity profile and the temperature profile 
become unsteady and turbulent in all the cases. In  the case of the elliptical 
cylinder R, increases up to 1730 as the ellipticity is increased while in the case of 
the co-axial pipes this Rayleigh number increases as the gap c between the 
cylinders is decreased (if c = a/b = 1.2 then R, = 60762, but decreases to 1 when 
c = 4). Besides this, the time required to reach steady state increases as the 
Rayleigh number increases in both circular and elliptical pipes; it also increases 
when the eccentricity is decreased. The cases discussed by Morton (1960) and 
Dalip Singh (1965) are particular cases of the results derived below. 

In  this investigation we have dealt with the following ducts: (i) circular tubes, 
(ii) elliptical tubes and (iii) co-axial tubes. The general solutions for both velocity 
and temperature fields have been found for the case when the pressure gradient 
is an arbitrary function of time, with an arbitrary heat source also present. 
Particular cases when both the parameters are absohte constants have been 
discussed in detail. 

We have made use of finite transforms very frequently; especially for the case 
of an elliptical tube, a new transform involving Mathieu functions developed by 
Gupta (1964) has been used. A few new infinite series have been summed with the 
help of this transform. 

Various non-dimensional quantities (for both the cylinders) such as the Nusselt 
number, volume flux and rate of heat transfer have been found when the pressure 
gradient and source of heat generation are absolute constants. 
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1. Introduction 
Heat-transfer problems of forced convection in channels have constituted an 

attractive, important and usefd subject of investigation for several years. The 
free and forced convection problems for channels under fully developed con- 
ditions with constant wall temperature have been investigated for many years. 

In these problems thermal convection consists of the transport of heat by a 
moving fluid in which the vertical variations of the temperature (and hence 
density) produce a distributed buoyancy force that itself modifies the flow. This 
interaction of velocity and temperature is an essential feature of convection; 
hence, to find the convection flow in a heated flow, both the temperature and 
velocity fields must be determined throughout the whole region of flow. 

At a first glance it may seem that the problem is simply a change of boundary 
conditions but solutions of this kind are usually difficult to obtain even in the 
steady case, and so under the condition only simple categories of forced and 
natural convection have been studied theoretically in detail. 

The energy equation and momentum equation are not uncoupled as in the case 
of constant wall temperature, hence mathematically this problem is not so 
simple. This implies that in order to study the velocity and temperature fields in 
this mixed boundary-value problem it is necessary to seek solutions of an inhomo- 
genous biharmonic equation obtained after eliminating either the velocity or 
temperature field in the steady case. This approach has been used by many 
research workers. Tao (1961) has suggested introducing a complex analysis, but 
this method gives an equation which is very involved in the unsteady case. 

The main aim of this investigation is to solve the unsteady case for tubes of 
various cross-sections by the method of transform calculus. So far as is known to 
the author the solution of the unsteady case for a circular cylinder has not been 
treated in such a general manner before, hence it has been investigated in great 
detail here. Another object of this study is to discuss the problem for a hollow 
elliptical cylinder with the help of the finite transform (discussed in an earlier 
paper by the author (1964)). The results obtained by various authors (e.g. Morton 
1960; Dalip Singh 1965) are particular cases of the results obtained here. 

The striking feature of these investigations is that the Rayleigh number 
increases as the eccentricity of the hollow elliptical cylinder is increased. Follow- 
ing King & Wiltse (1958) it has been found that the value of the critical Rayleigh 
number increases up to 1730 when ellipticity is increased while in the case of a 
circular cylinder it is 33. It has been found further that in the case of co-axial 
circular pipes R, increases to 60762 when c = alb = 1-2 and decreases to unity 
when c = a/b = 4. 

2. Fundamental equations 
Consider the unsteady flow in the direction of the axis of a pipe of a fluid with 

density p under a pressure gradient. Since the pressure gradient is not necessarily 
a constant in unsteady flow, we have assumed it to be an arbitrary function of 
time along the vertical pipe, the walls of which are maintained a t  a uniform 
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temperature gradient in the direction of the axis. The system will be referred to in 
a Cartesian system of co-ordinates, and the axis of the pipe is directed vertically 
upwards. 

The equations of continuity, momentum and energy are written using the 
Boussinesq approximation, i.e. 

ajui = 0, 

atT+ujajT = kV2T+Q, 

where we have used the summation convention and the following notation: 

aj = a/ax,, a, = apt  (j = 1,2,3) .  

h is the unit vector in the direction opposite to that of gravity; Q is the heat 
source term and in general is a function of the spatial co-ordinates and time. All 
other symbols have their usual meaning. Suppose that the inner wall of the cylin- 
der is held a t  temperature TI, and To is the temperature of the pipe a t  the level of 
the origin. Let a be the characteristic length, and let us suppose the temperature 
to be of the form 

T-T, = -p‘x,h,+e, 

where the first term, in which /3’ = (To - T,)/a, describes the temperature in the 
static state and 8 is the deviation from the linear distribution. The fundamental 
equations must be supplemented by an equation of state, which we approximate 
as 

p = po[I - a(T - To)]. 

Hence we arrive at  the well-known system of equations 

a,u, = 0, 

a,u, + u,a,ui = - aic + agehi + vv2ui, 

ate + u, a,s = phjU, + w e  + Qi, 

where 0 = p~po+gxjhj-~~’agx;,h;x,ihj 

and a, g, v and k are assumed to be constants. 
To obtain the non-dimensional form of the equations we set 

This yields, after dropping the primes, 

where P = v/k is the Prandtl number, R = ag/3’a4/kv is the Rayleigh number and 
a, = agaE/k=v. 

6-2 
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Let the fluid flow be in the direction of the axis of the cylinder and u3, say, in 
the direction of the axis of the cylinder, then u1 = 0 = up and the equations are 

transformed into au3px3 = 0, 

where 

In  this one-dimensional flow problem, where conditions vary in time but not in 
the x3 direction (apart from the pressure gradient), the equations become linear. 

Differentiating the first equation of (2.4) with respect to x3, we find that 
grad (a6/ax3) vanishes, hence a6j/ax3 is a function of time only. Thus we can write 
(2.4) in the following form: 

au3/at = p y a 3  + pe -f(t) ,  

a#/at = Ru, + 0;s + @(t)g(xl, xg), 
(2.5) 

(2.6) 

where Q = @(t)g(xl, x2). 
Equations (2.5) and (2.6) are to be solved under the following boundary 

(i) u3 = 0 = 8 on rigid boundaries, 
(ii) u3 = 0 = 8 initially. 

conditions : 

3. Circular tubes 
In this section the case of a circular tube is investigated. Since all the quantities 

are independent of q5 and depend only on r owing to axial symmetry, (2.5) and 
(2.6) in cylindrical polar co-ordinates take the form 

ae 
at 

with the boundary conditions 

u,(r,O) = 0 = 8(r,O) when t = 0, 

u3( l , t )  = 0 = O(1,t) for t > 0. 
(3.2) 

By multiplying (3.1) by rJo(rqi) and integrating with respect to r between 0 and 1, 
we get 

dZ,/dt = - PqiU, f Pi3 - f ( t )  Jl(qi)/qi, (3.3) 

d8/dt = RU3-&8+$(t)g(qi), (3.4) 

where 

and qi is the ith positive root of 
with the boundary conditions 

Jo(q) = 0, (3.5) 

(3.6) 
- 
u3 = o = 8, ds3/dt = 0 = d8/dt initially. 
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Eliminating 8 from the (3.3) and (3.4), we have 

-+v+ d2U, l )g:z+(Pq4-RP)@, dU3 = P ~ ( q , ) ~ ( t ) - q , J ; @ i ) S ( t ) - f ’ ( t ) p i  J1(qd 
at2 

= X(t),  say. (3.7) 

The appropriate solution of (3.7) with the boundary conditions (3.6) is given by 

and a = -${ - (P  + l)q! + [(P- 1)2q2 + 4RP]j}, 

/3 = -${ - (P+ l )q$ - [(P-  l )2qf+ 4RP]i}. 

Using the well-known inversion formulae, (3.8) is inverted to give 

where summation is taken over all the positive roots of (3.5). It is quite obvious 
that as R (the Rayleigh number) increases the velocity stabilizes, but as soon as 
R reaches the critical value, i.e. R = q: (ql being the first zero of (3.5)) the steady 
state is disturbed. 

Similarly, 

G(t)  = eat e(p-&)t e--ptY(t)(dt)2 
where s s  
and 

Following the same method as before, (3.10) is inverted to give 

Y ( t )  = Pcl!mi) ?At) + @’(t) mi) - Rf(t)J,(q,)/q,. 

(3.10) 

(3.11) 

(3.12) 

the summation being extended over all the positive roots of (3.5). From the 
result for 0 it can readily be inferred that the temperature field becomes unsteady 
and turbulent at  the critical value of the Rayleigh number, R, = (2-403)*. This 
means that the assumption of fully developed flow is not justified if the tempera- 
ture gradient decreases with increases in height. 

4. Particular cases 
Let us suppose that 

f(t)  = EPe-yt, $(t)  = Peeat, g(qi) = J,(qi)/qi. 
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In this case 

By substituting these values in (3.9) we get the expression for u3. However, we 
are interested in the case when both the strength of the heat source and pressure 
gradient are constant. In  this case 

p - EP? Jl(Pi) X(t) = Jl(ai) P(3 - Eqq), P(t) = - - , 
Pi &-R qi 

F'(t) = 0 = F'(0))  f'(0) = 0 = +' (O) .  
Hence u3 is given by 

As was conjectured by Morton (1960)) the velocity becomes steady ultimately 
provided that the Rayleigh number is less than its critical value R,, and our 
results agree with that of Morton if I? = 0. It can be readily shown that if the 
temperature gradient increases with height the velocity field or the temperature 
field can be obtained by changing R to - R; in this case the critical value of R is 
high, and the flow ultimately becomes steady. The results of Morton (1960) and 
Tao (1961) are particular cases of these results, and are in complete agreement. 

The temperature field in this case is represented by 

If R < R,, ultimately 8 becomes steady. If there is no source of heat generation, 
i.e. P = 0,8 agrees with the results of Morton. (Our Bis l/R times that of Morton.) 

5. Co-axial pipes 
Proceeding in exactly the same way as in $4, we have 

where 
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c 1 -2 1 *5 2.0 2.5 3.0 3.5 4.0 
q1 15.7014 6.2702 3.1230 2.0732 1.5485 1.2339 1.0244 
R, 60762 1545 95.12 18 5.75 2.31 1 

TABLE 1 

and 

Since we are interested in the case of constant pressure gradient and constant 
heat source strength, we write 

It is quite obvious that P;(O) = f ‘ ( O )  = 0. Thus we get 

where the summation has been extended over the positive roots of (5.3). Pro- 
ceeding in the same manner as in the case of velocity, we have for temperature 

It is quite obvious that the solutions for velocity and temperature difference 
both become infinite at  the smallest root of (5.3), i.e. when R = q;, and beyond 
this value of €2, which is the critical value Re, the motion becomes unsteady and 
turbulent. The values of Re for different values of c are given in table 1 (see Carslaw 
& Jaeger 1947). 

It is quite clear from table 1 that the critical Rayleigh number decreases as the 
gap between the cylinders increases. The highest value of the Rayleigh number 
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(when c = 1.2) is ( 15-70)4 60762 and R decreases to nearly 1 when c = 4. It can 
be conjectured that the Rayleigh number can be made as large as we choose by 
decreasing the gap between the two cylinders. 

6. Unsteady flow within a hollow elliptical cylinder 

The fundamental equations in non-dimensional form are given by 
In this section the same problem is discussed for the case of the elliptical tube. 

where x1 = h cosh cos 7, y1 = h sinh f l  sin 7, h = (I  - a2)& = e ,  CT = h sinh 5, = b/a, 
h cosh go = I and fl  = fl, represents the boundary of the ellipse. The boundary 
conditions in elliptic co-ordinates become 

(6.2) I u3(fl77,t) = 0 for t > 0 on f l  = to, 0 6 q < 2n, 

us(& 7,O) = 0 for 
e(fl,q,t) = 0 for t > 0 on f l =  go, 0 Q q q 2n, 

t = O+ within the elliptic tube, 

0(6,7,  0) = 0 for t = O+ within the tube. 

Making use of the notation due to Morse & Feshbach (1953) and the technique 
given in Gupta (1964) we have 

where q2m,n is the mth root of the equation 

Hence we see that ii3 and B satisfy the following equations: 

dzc, Pq -+*us at = PB-f(jt,q2n,m), 

where 
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with the initial conditions 

U3 = 0 = 8, dii3/dt = @/dt = 0 when t = 0. (6.8) 

By eliminating 8 from (6.6) and (6.7), we get 

dE3 ( ) d2U3 -+((P+1)92n,-+P Pzn.m-R u3 = X(t), 
dt2 h2 at (6.9) 

2 
q2nm - where 

Let us put qzn,m/h2 = rin,,. Now the appropriate solution of (6.9) is given by 

X ( t )  = W ) g ( q 2 n , m )  -Sl(k q2n,m) - ,-fK QZn,m). 

(6.10) 

(6.12) 

Hence by the same technique as that given by the author (1964) inversion gives 

a=-{ ; - ( P + w;,, + [(p - win, + 4 ~ ~ 1 : ) ~  

p = +{ - ( p  + 1) rin, , - c(p - VYL,, + 4 ~ ~ 1 4 1 .  

(6.15) 

and 

In the same way as in the case of the velocity field, after inversion, we get 

Ydt) = - m q2n,rn) + p!WY;n,,m2,,,) - YW S(qz,,,). (6.16) 

7. Transition to circular cylinder 

circular cylinder of radius unity. We have rim,, = 
We see that both u3 and B are independent of 7 when we consider the case ofthe 

m = 1,2, . . ., these being 
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the roots of J,(q) = 0. Also e+O as &+-a, and sinhg+coshg,hcosh[-+r, 
h sinh -+ dr and cosh 26dg -+ 2rh2dr. Making use of these we find that 

SeO(7, q2n,m)+ ' 9  JeZn(t9 q2n,m) +Jo(r~) .  

Hence (6.10) and (6.14) degenerate to (3.9) and (3.11) respectively as the elliptical 
cylinder degenerates into a circular cylinder. 

8. A particular case 

constant, then, 

where 

If the strength of the heat source, as well as the pressure gradient, is an absolute 

X ( t )  = P(F - Eyin,,), Yl(t) = P ( F Y ~ ~ , ~  - RE), 

whereas P'(t) = G'(t) = 0 for all values oft. Thus we get 

U3 = P(0)  + (pe"t-aePt)P(0)/(a-p), 

which on inversion yields 

Similarly, for the temperature distribution we have 

(8.4) 

Now we sum the series for the steady state with the help of the results obtained in 
the appendix. From (8.2), (6.3) and (6.4) by virtue of the boundary conditions we 
have (see appendix) 
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R, 39 39.6 60.8 112.59 248 702 1730 

5, 1.573 1.044 0.748 0-603 0.457 0-346 0.268 
e (2*5)-l (1*55)-l (1*31)-l (l.lt3-l ( l . l O ) - l  (1*06)-l (1*04)-' 
Q 0 , l  1 3 6 9 15 25 40 

TABLE 2. q,,l is the first zero of (6.4) for different values of 5. 

where 

= r [ D i  + . . .] 
and q' = $h2dR. 

It is quite obvious that in this case when R reaches its critical value, i.e. 
R, = yf,,, the velocity as well as the temperature field becomes unsteady. By 
changing R to - R we obtain the results when the temperature gradient is in 
opposite direction, and in this case, it can be readily seen that the steady-state 
terms are in complete agreement with that found by Dalip Singh (1965) 
provided that the notation of Mclachlan (1951) is used. The results we have 
derived are quite new. 

9. General discussion of the solution 
In  all cases the solutions for the velocity and temperature consist of the two 

parts. One is the transient part and the other is the steady part. It is quite 
obvious that the transient part decreases as time increases (provided that R 
remains below the critical value). In  the case when the upflow is heated the 
increase in the Rayleigh number is quite considerable, but in the case when the 
downflow is heated the solution for u3 and 8 both becomes unsteady and turbulent 
as the Rayleigh number increases. 

For each class of pipes there is a different value of R, (the critical Rayleigh 
number). Obviously for coaxial pipes the Rayleigh number increases as the gap 
between the cylinders decreases, and reaches 60 762, while it is only 33 in the case 
of the circular pipe. For an elliptical tube the critical value of the Rayleigh 
number increases with the increase of the ellipticity e as in table 2. 

The striking feature of the solutions obtained. is that the fully developed 
laminar flow which is found for small Rayleigh numbers becomes impossible as 
the Rayleigh number approaches the critical value. 

Circular tube. When the pressure gradient and strength of the heat source is an 
absolute constant the flow ultimately becomes steady. Making use of Bessel's 



92 R. K. Gupta 

inequality, which states that for an orthonormal set Jo(rqi), whether closed or not, 
we have 

where the B$ are the coefficients in the generalized Fourier’s expansion of #(rqi) in 
terms of Jo(rqi) and (0’1) is the interval of orthogonality. Evidently the transient 
part T in (4.1) satisfies 

where a0, Po and qo are the smallest values at  smallest root of (3.5). 
means of Bessel’s inequality, 

Hence, by 

If P = 1,  equations (9.2) and (4.1) give 

Pollowing the same method as for (9.3) we have for the femperature difference 

T t  is quite evident from (9.3) and (9.4) that as R increases the transient part 
dies out slowly and if it reaches its critical value or passes beyond this then both 
the velocity and temperature fields become unsteady and non-laminar . 
Elliptical cylinder Following the same method as in the cases of the circular 

cylinder we have from (8.5) and (8.6) 
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and similarly, 

It can be easily verifiedfrom (9.5) and (9.6) that the transient part asin the case of 
the circular cylinder dies out slowly when R increases and if it  reaches the critical 
value or beyond that the fields (temperature or the velocity) in both the cases 
become non-laminar, unsteady and continue to be so. 

10. Convection when the pipe temperature decreases with height 
In  this section the case of constant pressure gradient and heat source strength 

is discussed in detail for both circular and elliptical tubes. Various non-dimen- 
sional quantities have been found. A general formula for the Nusselt number in 
the case of the unsteady flow has been derived for both types of tube in these 
cases. Our results to first order are in complete agreement with that of Morton for 

= 0 (he has not discussed the case with a heat source). Velocity distributions 
and temperature distributions are given in figures 1-4. 

The steady cooling of ascending hot fluid or the steady heating of descending 
cold fluid correspond when R is positive. The general solution is as given by 
(4.1) and (4.2) for the case of the circular tube and by (8.5) and (8.6) in the case 
of the elliptical tube. We shall find various non-dimensional quantities for the 
two cases. 

Circular tube. When the pressure gradient and the heat source strength are 
absolute constants we have the following. 

(a )  The rate of heat transfer through the pipe walls to the fluid per unit area of 
pipe surface is 

KP’ LEJR J;(R$ P+E,,IR X- I ; ( R ~ )  
X-- - 

- 7 [ 2(R)f Jo (R f )  2Rf I,(Rf) 

where the primes imply differentiation with respect to the argument and K 
is the thermal conductivity. I f  R is less than the critical value R,, and .@ = 0 and 
t-too, the above results agree with that of Morton. In  this case 8 is I/R times that 
of Morton. 
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FIGURE 1. Non-dimensional velocity profiles for falling convection under a specified 
pressure gradient and heat source strength for a circular pipe. 
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0.4 0.8 1.2 1.6 

\ \ 

\ \  

0.4 0.8 1.2 1.6 

E 
FIGURE 2. Non-dimensional velocity profiles for falling convection with a specified pressure 
gradient and heat source strength for an elliptical pipe. 

(a) 7 = 0, ( b )  T = in, (4 T = 47r. 

(b )  The rate of volume flow through the pipe is 
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t 

0.2 0.4 0.6 0.8 1 

r 

5 

FIGURE 3. Non-dimensional buoyancy profiles for falling convection in a heated 
circular pipe with a constant heat source strength. 

If R < R, and t - tco,  the steady-state flux is 

which is a quite new result. 
If P -+ 0, our result is in complete agreement with that of Morton. 
(c) A measure of the effectiveness of heat transfer is provided by the Nusselt 

number 

N =  

This temperature can be measured in different ways; here, partly for compari- 
son with the results quoted above, it will be taken as the difference between the 
wall temperature and the mean temperature, which is 

Rate of heat transfer rate per unit area of pipe wall x pipe diameter 
E x characteristic temperature in main direction of conduction 

' 
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FIGURE 4. Non-dimensional buoyancy profiles for falling convection 

heated elliptical pipe with a constant heat source strength. 

( a )  7 = 0, ( b )  11 = in, (c) 7 = +n. 

E 

1 

in a 

7 



When t -+a, i.e. in the steady case, 

which is a quite new result. It is quite obvious that if P -+ 0 our results agree with 
that of Morton. 

Elliptical tubes. We shall now find all the above quantities for the case of an 
elliptical tube. 

( A )  The rate of heat transfer through the pipe walls per unit area of a pipe 
surface is 

S being the length of the perimeter of the ellipse. Hence 

(10.7) 
where primes denote differentiation with respect to the argument. 

(B)  The rate of volume flow through the pipe is given by 

u3dxdy = - b ~ ~ ~ ~ 0 2 n u 3 ( c o s h 2 ~ -  cos2q)dcdq 

= -[(E-.@/JR) kah2 2 (&) (;.sinh2(, 
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(10.8) 
If R < R, and t+co the steady-state flux is 

( - 1)n 2n2Dtn(- q')"'(D;n( - a') 2 cosh 2E- Din( - a')) Je,,(E, - p') dE 

0 11. 00 

Je2n(Eo, - $1 Me,,( - a') - z  

(C) The mean temperature difference across a section of the pipe is 

n = O  

(10.9) 

- 5 g (,8G(0)eut-aG(O)e~t) 

n=Om=l 8 - a  

(10.10) 

7-2 
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When t - tm the mean temperature in the steady case becomes 

/3’h2a2 [ ( 
2nbR 

+(E -.@/,/R) nsinh 2&, 
- 

m 2n2Din(q’)s5. (D6(q’)  2 cosh 25- Din(q‘)) Je,,(t, q’) d t )  
0 

Je2n(60, Q‘) Me2n(q‘) 
- c  

n=O 

0 
m 2m2Dtn( - q’)J’ia (Dtn( - q’) 2 cosh 26- DF( - q’)) Je2,(5, - q’) 

Je2n(60> - 4’) Me,,( - P’) 
- c  

n=O 

(10.11) 
(D) The Nusselt number in this case i s  given by 

m pG(0) eat - aG(0) ept 

P-a 

(10.12) 
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( E )  Transition to circular cylinder. It can be readily seen that as ~ + c o  and 
h --f 0, the elliptical cylinder degenerates into a circular cylinder and all the results 
mentioned above agree with the corresponding results for the circular pipe. 

Appendix 
To sum the steady-state terms in Q 8 the following procedure has been adopted. 

When we are dealing with the steady-state problem the equations are trans- 
formed into m , + e  = E ,  (A 1) 

(A 2 )  Oz8+ Ru, = - P ,  
where E a n d 3  are absolute constants defined as before. From the above equations 
we derive the following two equations 

( v ~ + J R )  + = E J R - P ,  
(V2-JR)q51 = - ( P + E J R ) ,  

where + = 8 + dRu, and = 8 - u3JR. The boundary conditions give + = 0 
and q51 = 0 on 5 = to. The solution of the equations under these conditions in 
elliptical co-ordinates is 

where 4q’ = h2 JR.  
Now we use the transform defined in $ 6  so that we may be able to find the 

transforms of u3 and 0 and their inversions. Multiplying (A 1) and (A2) by 
Se2n(q,q2n,m) Je2n(g,q2n,m) (whereq,,,,isoneofthepositiverootsof Jez,(to,q) = 0) 
and integrating with respect to 7 from 0 to 271. and with respect to t between 
0 and to, we have, as in Q (6. I), 

On solving the above equations, we get 

It is quite obvious that the values of 8 and Z, found above satisfy (A 1) and (A 2 )  
hence the transforms of u3 and 0 are given by (A 4) above which are the same as 
those obtained in Q 8. Hence inversion gives the sum of the series for the steady 
state. 
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